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ABSTRACT
Objective
To identify sleep stages by using EEG signals (O1A2
and O2A1) recorded during sleep.

Method
Different features are extracted from the EEG signals
by the Synchrosqueezing transform. The dynamical
features underlying EEG are modeled by a system of
jump-diffusion processes, whose quadratic variation
was used to compute the Mahalanobis-like distance
between features extracted from two different time
slots. The similarity level among features is eval-
uated by the diffusion distance and map. Instead
of using the kernel support vector machine (SVM)
or the K-nearest neighbors algorithm (KNN) to do
the classification, the hidden Markov model (HMM)
is applied to predict the sleep stage based on the
alternating diffusion map of features. To prevent
over-fitting, we randomly (25 times) partition the
data into the training dataset (80%) and the connected
validation dataset (20%) and report the averaged result.

Results
30 subjects were recruited to test the performance of
the algorithm. 15 features were extracted from each
5-second window. The dynamic of features is success-
fully modeled by jump-diffusion processes. The result
is comparable to human expert classification. The
classification of awake, REM, N1, N2 and N3 sleep
stages based on HMM (resp. SVM) has the overall
accuracy 74% (resp. 65%). The Mann-Whitney test
confirms that the performance of HMM classification
is better than that of the kernel SVM.

Conclusion
This study demonstrates the capability of using EEG
signals to discern sleep stages automatically.
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MODEL
Given a signal O1A2 (or O2A1), let y(t) =
[y1(t) y2(t) · · · ym(t)], t ∈ [0, T ] (sec) be the ex-
tracted features, which is assumed to be controlled by
an underlying process θ and an unknown function f

y(t) = f(θ1(t), θ2(t), ..., θd(t)),

The components θ1, . . . , θd are assumed to satisfy

θi(t) =

∫ t

0
ai(θ(s))ds+W i(t) + Ji(t), t ∈ [0, T ],

where ai is an unknown drift, W i(t) is a standard
Brownian motion and J i(t) is a pure jump process.
The self-product JT

f Jf of the Jacobian matrix of f
can be estimated by the quadratic variation process
[y,y](·) of y through

[yj , yk](t) =

∫ t

0

{[
Jf (θ(s))

]T[
Jf (θ(s))

]}
j,k

ds

+
∑

0<s≤t

[
yj(s)− yj(s−)

][
yk(s)− yk(s−)

]
.

After knowing how to deal with the jump-related term,

‖θ(t)− θ(s)‖2Rd

≈
1

2

[
y(t)− y(s)

]
[Jf (θ(t))

TJf (θ(t))]
−1
[
y(t)− y(s)

]T
+
1

2

[
y(t)− y(s)

]
[Jf (θ(s))

TJf (θ(s))]
−1
[
y(t)− y(s)

]T
.

DIFFUSION MAP Φ (DM)
The underlying factors {θ(ti)}Ni=1 ⊂ Rd are viewed
as the vertices of an edge-weighted graph G. On
G, we construct a Markov chain with transition ma-
trix P ∈ RN×N by row normalizing the affin-
ity/similarity matrix K: P = D−1K, D =

diag(
N∑
j=1

K1,j , ...,
N∑
j=1

KN,j).
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Based on eigenvectors/values of P, the truncated DM

is defined by θ(tj)
Φ−→

 λ2u2(j)
λ3u3(j)
λ4u4(j)

 =: vj .

CLASSIFICATION VIA HMM

• create a cookbook B for the vector quantization:
vj

VQ−→ ej = arg min
c∈B
|vj − c|, j = 1, ..., N.

• Use the training set to estimate the transition ma-

trix: ∀ s, s′ ∈ {Awake,REM,N1,N2,N3},

p(s
′ |s) =

[
n∑

j=1

1{sj = s, sj+1 = s
′}

][
n∑̀
=1

1{s` = s}
]−1

.

• Emission matrix (b). ∀ c ∈ B,

bs(c) =

[
n∑

j=1

1{sj = s, ej = c}

] [
n∑̀
=1

1{s` = s}
]−1

.

• compute and optimize the likelihood function

P (Sn+1 = sn+1, ..., SN = sN |en+1, ..., eN , Sn = sn)

RESULTS
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• For each subject, 20% sleep
period is randomly selected
as the testing set.

• The accuracy of HMM
(74%) is better than SVM
(65%) and KNN (72%) aver-
agely.

• The prediction of sleep
stages by HMM is more sta-
ble than KNN and SVM.

DISCUSSION

• For the sake of balancing between the computa-
tion complexity and number of DM points (res-
olution), the window size for the feature extrac-
tion is set to 5-second. The features we acquire
from the EEG signals are actually finer and hid-
den deeply inside the signal, which may not be
easily identified by human’s naked eyes.

• The experimental results show that introducing
jump processes to capture the normal or abnor-

mal sleep stage transition is reasonable and it can
brings positive effects on the subsequent classifi-
cation work.
• More features will be taken into account. Cur-

rently, 15 features were extracted from each 5-
second window. The ad-hoc method, i.e., the
threshold policy, is applied to identify whether
abnormal jumps occur. The corresponding per-
formance is comparable to the model free ap-
proach [1]. The identification of jumps should
be subject-dependent. More prior information is
desirable for correctly identifying the occurrence
of jumps.
• Our further work is to explore the possibility

of realtime inter-subject sleep stage assessment
and test the possibility of using this algorithm on
other physiology signal like respiratory signals
(THO and ABD) to discern sleep stage automat-
ically.


