投稿

通訊作者: 陳永哲; 單位: 高雄長庚 胸腔內科;

職稱:主治醫師

電話: 07-0317123-8199 ; 手機: 0975056041

Email : yungchechen@yahoo.com.tw;

身分證字號: E121332995

住址: 高雄市鳥松區大埤路 123 號

項目類別:

□ Sleep Physiology,

- □ Sleep Monitoring,
- □ Circadian Rhythm Disorders,
- 🗆 Insomnia,

Sleep-disordered Breathing,

□ Sleep and Neurological Disorders,

- □ Sleep and Psychiatric Disorders,
- □ Others_____

摘要類別: ■ 原著研究摘要 □ 個案報告

發表方式: □ 口頭宣讀 □壁報研討會 📕 隨大會安排

是否申請論文獎:■ 是□ 否

Altered miR-21-5p and miR-23a-3p expressions in obstructive sleep apnea modulates cell apoptosis by targeting pro-inflammatory genes

Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine Yung-Che Chen^{1,2}, Meng-Chih Lin^{1,2}, Mao-Chang Su^{1,2}, Po-Yuan Hsu^{1,3}, Chien-Hung Chin^{1,2}, Kuo-Tung Huang^{1,2}, Ting-Ya Wang^{1,4}, Yung-Yung Lin^{1,4}, Chia-Wei Liou³, Shu-Jun Kong^{1,2}, Lian-Rong Liu^{1,2}, Wei-Zhe Liu^{1,2}, Yi-Jing Li^{1,2}

Background: The purpose of this study is to explore the anti-inflammatory role of microRNAs (miR)-21/23/146a/150/155 targeting the toll-like receptor pathway in response to chronic intermittent hypoxia with re-oxygenation (IHR) injury in patients with obstructive sleep apnea (OSA).

Methods: Gene expression levels of the five miRs, TLR2/4/6, and their down-stream mediators were assessed by quantitative RT-PCR method in peripheral blood mononuclear cells from 40 severe OSA patients, and 20 matched subjects with primary snoring (PS). Human monocytic THP-1 cell lines were induced to undergo apoptosis with IHR exposures, and transfected with miR-21-5p mimic.

Results: Gene expression levels of miR-21-5p (adjusted p=0.024) and miR-23a-3p (adjusted p=0.028) were decreased in treatment-naïve OSA patients as compared with that in PS subjects, while TNF- α gene expression (adjusted p=0.04) was increased. Gene expression levels of both miR-21-5p, and miR-23-3p were negatively correlated with apnea hypopnea index (r=-0.478, p<0.001; r=-0.446, p=0.001) and oxygen desaturation index (r=-0.45, p=0.001; r=-0.421, p=0.001), while TNF- α gene expression positively correlated with apnea hypopnea index (r=0.388, p=0.003). Both miR-21 5p and miR-23-3p gene expressions were negatively correlated with their predicted target gene expressions, including TLR4, TLR6, TNF- α , NFAT5, ELF2, SP1, PDCD4, and HIF-2 α . In vitro IHR treatment resulted in increased apoptosis and decreased cell viability along with decreased miR-21-5p, miR-23-3p, and miR-155-5p gene expressions, but increased miR-146a-5p (all p values <0.05). The percentage of cytotoxicity and gene expressions of TNF- α , ELF2, NFAT5, HIF-2 α , IL6, IL6R, EDNRB, and TLR4 were increased with IHR as compared with that in normoxic condition, while decreased with miR-21-5p mimic transfection under IHR condition as compared with that in IHR alone condition.

Conclusions: MiR-21-5p and miR-23-3p were down-regulated both in severe OSA patients and with in vitro IHR stimuli, while several predicted pro-inflammatory target genes were up-regulated. The findings provide biological insight into mechanisms by which IHR- suppressed miRs protect cell apoptosis via inhibit inflammation, and indicate that over-expression of the miR-21-5p may be a new therapy for OSA.

中文題目:阻塞性睡眠呼吸中止症異常的第21和23a型微小核醣核酸表現會經
由抑制促進發炎基因來降低細胞凋亡
作 者: 陳永哲 ^{1,2} 林孟志 ^{1,2} 蘇茂昌 ^{1,2} 許博淵 ^{1,3} 秦建弘 ^{1,2} 黃國棟 ^{1,2}
<u>王亭雅^{1,4} 林詠詠^{1,4} 劉嘉為⁵ 孔淑君² 劉蓮榮² 劉瑋哲² 李怡靜²</u>
服務單位: 高雄長庚醫院 1 胸腔內科 2 睡眠醫學中心 3 醫研部 4 核心實驗室
⁵ 神經內科