連續陽壓呼吸器對呼吸中止症能量消耗、攝取、荷爾蒙調節和身體組成的效果:一項隨機試 驗

<u>李佩玲</u> ^{1,2,3,4,5} · 簡盟月 ⁶ · 賴聖如 ⁷ · **Joshua** Gooley ⁸ · 馮馨醇 ⁷ · 陳示國 ⁹ · 林明澤 ^{1,10} · 陳永瑄 ^{1,2,3} · 邱鴻志 ¹¹ · 劉博剛 ¹¹ · 古博文 ¹¹ · 王素梅 ¹² · 張晉豪 ¹² · 楊偉勛 ^{2,3} · 余忠仁 ^{2,3}

台大醫院 ¹ 睡眠中心 ² 內科部 ⁷ 營養部;台灣大學 ³ 醫學院 ⁴ 電子科技整合中心 ⁹ 生命科學; ⁵ 台大醫院新竹分院睡眠中心; ⁶ 輔大醫院物理治療學; ⁸ Duke-NHS 新加; ¹⁰ 蕭中正醫; ¹¹ 聯發科技

CPAP Effects on Energy Expenditure, Intake, Hormonal Regulation, and Body Composition: A Randomized Trial

<u>Pei-Lin Lee</u>^{1,2,3,4,5}; Meng-Yueh Chien⁶; Shang-Ru Lai⁷; Joshua J. Gooley⁸; Hsin-Chun Feng⁷; Shih-Kuo Chen⁹; Ming-Tzer Lin¹⁰; Yung-Hsuan Chen^{1,2,3}; Hung-Chih Chiu¹¹; Po-Kang Liu¹¹; Bo-Wen Ku¹¹; Su-Mei Wang¹²; Chin-Hao Chang¹²; Wei-Shiung Yang^{2,3}; Chong-Jen Yu^{2,3}

¹Center of Sleep Disorder; ²Department of Internal Medicine, ⁷Department of Dietetics; ¹²Department of Medical Research; National Taiwan University Hospital, Taipei, Taiwan

³School of Medicine; College of Medicine, ⁴Center for Electronics Technology Integration, ⁹Department of Life Science; National Taiwan University, Taipei, Taiwan

⁵Sleep Disorders Center, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan

⁶Division of Physical Medicine & Rehabilitation, Fu Jen Catholic University Hospital

⁸Neuroscience and Behavioural Disorders Programme, Duke-NUS Medical School

¹⁰Hsiao Chung-Cheng Hospital, New Taipei, Taiwan

¹¹MediaTek Inc., Hsinchu, Taiwan

Study Objectives

Weight gain after continuous positive airway pressure (CPAP) initiation in obstructive sleep apnea (OSA) is common, but its mechanism and relevance remain unclear. This open-label randomized trial evaluated CPAP effects on energy expenditure, intake, body composition, physical activity, and appetite-regulatory hormones.

Methods

Patients with OSA were randomized (1:1) to 12-week CPAP or inactive control. The primary outcome was resting energy expenditure (REE). Secondary outcomes included dietary intake, eating behavior, fat mass (FM), fat-free mass (FFM), and activity count. Tertiary outcomes included appetite-regulatory hormones. CPAP effects were assessed as baseline-adjusted between-group differences using intention-to-treat (ITT) analysis; Per-protocol analysis (completers) served as sensitivity analysis.

Results

Of 52 randomized participants, 45 completed the study. In ITT analysis, CPAP had no effect on REE (8.6 kcal/day [95% CI: -51.5, 68.7]; P=0.774) or caloric intake (144.4 kcal/day [95% CI: -123.1, 411.9]; P=0.283). Although insignificant in morning, CPAP significantly increased evening body weight (P=0.017) and body mass index in morning and evening (P=0.040 and 0.030). CPAP also increased FFM, raised acylated ghrelin and insulin-like growth factor 1, and reduced cortisol and cognitive restraint. No changes were observed in macronutrient intake, FM, activity, insulin resistance, leptin, or neuropeptide Y. Per-protocol findings were similar.

Conclusions

CPAP-induced weight gain, probably primarily from FFM, occurred without measurable changes in REE, activity, or significant increases in caloric intake. Accompanying hormonal and behavioral changes suggest a subtle positive energy balance. This gain may not reflect adverse metabolic effects and support evaluating CPAP's metabolic impact through body composition, not weight alone.